Investigating mechanisms and implications for the relationship between house mice and ship rats

Lucy Bridgman
lb63@students.waikato.ac.nz
Background

- ↓ rats = ↑ mouse detections

Innes et al. (1995)

- Change in abundance?
- Unwanted management outcome!

Brown et al. (1996)

- Change in detectability?
- Implies uncertainty in monitoring
Background

- \(\downarrow \) rats = \(\uparrow \) mouse detections

- Mechanism?

 - Exploitation/resource competition
 - Use the same resources

 - Interference competition
 - Rats ‘bully’ mice for access to resources

 - Intraguild predation
 - Extreme form of interference competition
 - Rats compete with AND prey on mice
Two approaches:

1. Mechanism
 – studying behaviour of individuals

2. Abundance and detectability
 – studying populations
1.

- Mechanism - **INDIVIDUALS**

 - How do ship rats behave toward mice?

 - Is their behaviour predatory?

 - Topographically different from other aggressive behaviour

 - Associated with feeding
1. methods

• Ethical considerations!!!

• Wire mesh screen

• Zombie mice
1. methods – zombie mice

- **Apparatus – aerial plan**

![Diagram of the apparatus](image)

- line for moving zombie mouse
- mouse-proof wire mesh screen
- compartment for presenting opponent
- 400mm width
- 200mm length
- 300mm height
- 700mm total height
- rat enclosure
- camera
- rat nest tube
1. methods

- Switched light/dark cycle – infra-red light
- 4 nights habituation time
- Each rat presented with:
 - live rat, live mouse, & zombie mouse on a different night
- 12 subject ship rats
 - 6 food ad lib, 6 food restricted
1. methods

- 100mins to begin interacting

- Interacting time =
 - 10 mins - live opponents
 - 20 mins - zombie mouse

- Observe for live opponents:
 - No. of interactions (close contact)
 - No. of aggressive interactions (biting/clawing)

- Observe for zombie mice
 - ‘Attack’, restraint, eating
 - Mass of mouse eaten
1. results

• Is behaviour topographically different from other aggressive behaviour?

Mean (±SE) number of interactions for live mouse and live rat treatments

More aggression toward mice
(t = 2.636, df = 11, p-value = 0.023)

Different characteristics
• raised hackles
• ‘crab walking’
1. results

- Is aggression associated with feeding?
1. results

- Eating focused on eyes and ears
- Gut also opened by some rats
1. Conclusions

- Topographically different from intraspecific behaviour
- Associated with feeding
- Potential for intraguild predation
 - Reduce competition & get a meal!
 - Major threat for house mice
- But consider:
 - Artificial conditions
 - Mouse avoidance behaviour
 - Predation events could be rare, but risk of predation can influence behaviour, abundance and distribution
2.

- Abundance or detectability - POPULATIONS

 - Compare abundance from trapping vs. activity from tracking tunnels

 - How does rat abundance influence probability of detecting a mouse?
2. study Area

Waipapa Ecological Area, Pureora Forest Park
2. study Area

- Tawa dominated podocarp-hardwood forest

- Each year, rats controlled in either WN or WS
 - Bait stations, ~150x50m spacing
 - 2009/2010 - WS
 - 2010/2011 - WN
2. methods - Grids

- 8 grids
 - 4 in WN
 - 4 in WS

- Grid spacing > 400m
2. methods – rodent Monitoring

• 16 tracking tunnels, 4x4 50m spacing

• 42 Longworth traps, 6x7 16.5m spacing

Trap image from alanaecology.com
2. methods – rodent monitoring

• Survey =

• 1 night tracking index
 – Presence/absence of rats & mice
 – No. of tunnels tracked per grid = ACTIVITY

• 5 nights of live trapping
 – Mice marked - ear-hole punched
 – Minimum Number Known Alive (MNKA) per grid = ABUNDANCE
 – Capture histories used to investigate DETECTABILITY (capture probability)
Timeline of Events

Rat control in Waipapa South

Rat control in Waipapa North
2. results
Treatment = ↓ rat activity/abundance \((F_{[3,49]} = 15.054, P < 0.001) \)

Seasonal effects – autumn populations higher than summer \((F_{[3,49]} = 4.013, P = 0.012) \)
WS sites:
Treatment = \uparrow \textit{mouse activity} general
\((Z = 3.507, P < 0.001)\)

WN sites:
Treatment = \uparrow \textit{mouse activity} over time
\((Z = 2.764, P = 0.006)\)

Error bars are 1 SE
WS sites:
Treatment = ↑ **mouse abundance**
general
(Z = 3.911, P < 0.001)

WN sites:
Treatment = ↑ **mouse abundance**
over time
(Z = 2.415, P = 0.016)
3. results - detectability

Huggins closed capture models (Program MARK)
Seasonal influences on detectability

Sample sizes are: spring 29, summer 18, autumn 65, winter 11.
Error bars are 95% confidence intervals.
Solid red lines = estimates, broken lines = upper and lower 95% confidence intervals.
Spring = fewer animals and resources
- Emphasis on resource competition

Autumn = more animals and resources
- Emphasis on interference competition/intraguild predation
2. Conclusions & implications

• Rats influenced mouse abundance...
 – Activity reflected abundance
 • Supports use of tracking activity to monitor mouse pop. trends

• **AND** detectability
 – But, complicated seasonal relationship
 • Resource vs. interference competition?
 • Need to consider resource availability & interactions when managing species – optimal exposure to traps/bait stations etc.
Acknowledgements

- University of Waikato
- Landcare Research
- Department of Conservation
- Royal Society
- Forest & Bird
- Environment Waikato
- Supervisors: Carolyn King, John Innes, Craig Gillies
- DOC staff associated with Pureora Forest Park, in particular Dave Smith & Howard Matthews
- Help with analysis: M. Rohan
- Advice and information: Deb Wilson, Wendy Ruscoe, Roger Pech, Penny Fisher, Bruce Warburton, Kim Young, Jake Overton
- Field & animal house help: Neil Fitzgerald, Bruce Patty, Stacey Foster, Toni Cornes, Mel Yeoman, Kelly Devoy, Laura Bergner, Kane Lynn, Barry O’Brien, Warrick Powrie, Hannah Ford, Jean-Baptiste Michel, Erin Bowkett
- Neil Fitzgerald Photography